rlen
wh t d

Overview of Performance
Optimization on Intel®
Xeon Phi™

Code Named Knights Landing (KNL)
Intel® Software Development Products

The 2nd Generation Intel® Xeon Phi™
Processor (code named Knights Landing)

Targeted for high performance computing « Data-level Parallelism (DLP)
* Introduces AVX-512 ISA

. High BW
+ Compatible with previous ISA (AVX, SSE, ...)
* Integrated memory on package: 490 measured
GB/sec”; up to 16 GB capacity « Instruction-level Parallelism (ILP)
+ Cache or separate NUMA node . Out-of-order core
* Cluster Parallelism « Two vector processing units per core
» Integrated fabric on package (Omni-Path) « Power Efﬁciency

* 2x100 Gbps ports . 215 Watts TDP (7290 is 245 Watts)

e Thread level Parallelism (TLP) « 2x145 Watts TDP for Xeon Dual socket BDW
E5-2697 (2x18 cores)
* Upto 68 cores X 4 hyper-threads per core = 272
threads (7290 offers 72 cores; premium part) Performance:
Vector Peak Performance: 3+TF DP, 6+TF SP

» Tiles: 2 cores per tile sharing Cache-Home-Agent L . *
for Cache Coherency and 1MB MB L2 cache Bandwidth: 490 GB/sec Triad Stream Score

*Using Streaming Stores in Flat Mode

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Focus Areas for
Optimization

Optimization Focus Areas

Parallelism Memory BW

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Parallelism on KNL

Multiple Threading Options

= Automatic Parallelism in Intel® Compilers
= OpenMP*

» Intel® Threading Building Blocks

» Threading inside of performance libraries

Also, MPIl and MPI+Threading

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Defining Imbalance in Parallelism

——

mbalance

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization on KNL

AVX-512 vector lanes
Automatic vectorization in compiler

= Sometimes needs help with directives/pragmas

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SIMD loops: syntax

#pragma omp simd [clauses]

for-loop

1$omp simd [clauses]
do-loops

'$omp end simd]

Loop has to be in “Canonical loop form’

= as do/for worksharing

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SIMD loop clauses

safelen (length)

= Maximum number of iterations that can run concurrently without breaking a dependence

— in practice, maximum vector length
linear (list[:linear-step])
= The variable value is in relationship with the iteration number

— X=X

.
i = Xorig T 17 linear-step

aligned (list[:alignment])
= Specifies that the list items have a given alignment

= Default is alignment for the architecture

Same as existing clauses W

private (list) <€—
lastprivate (list)
reduction (operator:list)

collapse (n)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SIMD functions: Syntax

#pragma omp declare simd [clauses]
[#pragma omp declare simd [clauses]]

function definition or declaration
I$Somp declare simd (function-or-procedure-name) [clauses]

Instructs the compiler to

= generate a SIMD-enabled version(s) of a given function

» that a SIMD-enabled version of the function is available to use from a SIMD loop

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SIMD functions: clauses

simdlen(/ength)

= generate function to support a given vector length
uniform(argument-list)

= argument has a constant value between the iterations of a given loop
inbranch

= function always called from inside an if statement

notinbranch

= function never called from inside an if statement

linear(argument-list[:linear-step]) <«

aligned(argument-list[:alignment])

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Same as before W

5 Steps to Efficient Vectorization - Vector Advisor
(part of Intel® Advisor, Parallel Studio, Cluster Studio)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1. Compiler diagnostics + Performance Data + SIMD 2. Guidance: detect problem and recommend how to
efficiency information fix it
& VA |ssue: Peeled/Remainder loop(s) present
S Total Cornpiler Vectorization @ All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Function Call Sites and Loopsa i i [I X Y 8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials
me | me Loop Type Why No Vectorization? Utilizing Full Vectors...
#{loop in runCForallLambdal oops] 00345 0.0845 [Scalar vector dependence prevents vector.., (5 Recommendation: Align memory access
#{loop in runCForallLambdal oops] 01405 37445 [] Scalar inner loop was already vectorized "~ Projected maximum performance gain: High
BV [loop in std:: Complex_base<double,struct C_double_complex>zi... | 0.031s 0031 @ | Vectorized (Bodvl | Projection confidence: Medium . ” e
. § - . se one of the memory accesses in the source loop does not
Vectorized SiE; 232 loop processing FloatdZ; Floatfd data ¢y 3. “Accurate” Trlp Counts + FLOPs: understand ry access and tell the compiler your memory access is aligned.
Peeled loop; loop stuts were reordered ape . . . byte boundary:
utilization, parallelism granularity & overheads
#{loop in stezbasic_string <char,struct std::char traits <chary,class stdzallo... 0.0005
#{loop in std:basic_string<char struct stdichar_traits <chars, class stdallo., 0,005 O |11 CUEE:| I I = SIZE*sizeof(float), 32);
) Median a [Min | Max | eration Duration | Cal Count
#){loop in stenum_put<char,class std:iostreambuf_iterator<char,struct st.. 0.000s eI 7 4 o5 i
040t 1 M1 <omms 2408000
o00sl E1 1 2 <00s 2075%
o0sl 219 <00Mis 1173619
000s 3 1 5 <00s 131315
4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis
SiteName Site Function SiteInfo Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site 203 runCRawLoops runCRawLoops.coc1063 € RAW:L No information available No information available
loop_site 139 runCRawLoops runCRawLoops.coc622 No information available 11139%1/36% / 2908 Mixed strides
D @ Type Site Name Sources Modules State loop_site 160 runCRawLoops runCRawLoops.coc925 No information available 100%/0%/0% | All unit strides
P1 Q@ Parallel site information site2 dqtest2.cpp dqtest2 v Not a problem
° N Memory Access Patterns
P2 Read after write dependency site2 dqtest2.cpp dqtest2 ew Py P Type Coutrce Modules _ Aligament
P3 @ Read after wiite dependency site2 dqtest2.cpp dqtest2 R New =p2 @ 0,01 Unit stride runCRawLoops.coc637 Icals.exe
m ' |Wiite after write dependency | site2 dqtest2.cpp dqtest2 " New o ;T-;Wﬁ éj;}jy;‘
PS @ Wiite after write dependency site2 dqtest2.cpp dqtest2 R New 637 Plipl[1] += 2[32+32];
638 12 += e[12+32);
P6 @ Wiite after read dependency site2 dqtest2.cpp dqtest2 R New 639 32 += £[32+32];
P7 @ Wiite after read dependency site2 dqtest2.cpp; idle.h dqtest2 R New mp3 @ 0.0 Unit stride runCRawLoops.coc638 Icals.exe
=p30 @ -1575;-63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 Icals.exe
626 i 64-1;
627 3 64-1;
628 plip] [2] += b[31][il];

Memory Bandwidth on KNL

High Bandwidth Memory
= \Want to maximize utilization
* Find high use memory objects using Intel® VTune™ Amplifier

= Allocate high use memory objects into HBM

— Memkind library http://memkind.qgithub.io/memkind
— Also includes AutoHBW

— Use numacti

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

|dentifying high bandwidth memory objects (1/3)

Memory object analysis: DDR only

% Memory Access Memory Usage viewpoint (change) @

INTEL VTUNE AMPLIFIER XE 2017

& Bottom-up - NIEIRGIN

St
35s 40s Os | DRAM Band... L2 Miss Count (Memory Allocation) v |
: R ———— iy v Total,...
4 5887) Viewing ¢ 1of1 p selected stack(s)
= @pack. A #*% Read,...
§ | e ‘ 100.0% (138004140 of 138004140)
o [#*s Write, ...
009 miniGhost.x!_mm_malloc - [unknown source file]
3 067" MCDRAM B... -
g @pack... ggg_ v e : miniGhost.x!mg_grid_init+0x4ebb - MG_UTILS F:705
i v
g ¢ =) ik miniGhost.x!mini_ghost+0x167 - DRIVER .F:145
i lpac.., 27200% F (4% MCD... miniGhost.x!main+0x128a - main.c:345
; b - [w* MCD... libc.so.6![libc s0.6]+0x21b14 - [unknown source file]
3] = ¥ €PU Time
T [5]» Wuk CPUTime ~
— e —
Grouping: Bandwidth Domain / Bandwidth Utilization Type / Memory Object / Allocation Stack - | «llQ | o ‘
Bandwidth Dol Bandwidth Utilization Type / M " | Memory Bound | [=
Memory llocation Stack CPU Time | L2 Hit Rate | L2 Hit Bound | L2 Miss Bound DRAM Bandwidth Bound AL EILS
v DRAM, GB/sec 50.0% 81.2% 6.8% 21.2% 56.7%, ,300,099,000
¥ High 38.5% (D 81.3% 8.6% 26.6% 3,195,095,850
» _mm_malloc (4 MB) 276,008,280
» [Unknown] 180,005,400
» _mm_malloc (4 MB) 87,002,610
» _mm_malloc (4 MB) . . 87,002,610
» “mm_malloc (4 M8) Use this grouping §7.002.610
» _mm_malloc (4 MB) 87,002,610
» _mm_malloc (4 MB) 84,002,520
» _mm_malloc (4 MB) : : 84,002,520
» _mm_malloc (4 MB) Sort by L2 MlSS Counts 1.e. 81,002,430
» _mm_malloc (4 MB) D man L 2 mi h f 81,002,430
» _mm_malloc (4 MB) # ema d SSes t O eac O 78,002,340
Il 4 MB A 75,002,250
b _mem_malloc (4 M8) these memory objects.
» _mm_malloc (4 MB) 75,002,250 =)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

|dentifying high bandwidth memory objects (2/3

Memory object analysis: DDR only

% Memory Access Memory Usage viewpoint (change) @

INTEL VTUNE AMPLIFIER XE 2017

DRAM Band... L2 Miss Count (Memory Allocation)

Z: @ pack. 5:::- “:‘TOtaI"" Viewing ¢ 1of1 p selected stack(s)
g | 94] - R 100.0% (138004140 of 138004140)
o V] ™% Write, ...
: 0,097, miniGhost.x!_mm_malloc - [unknown source file]
g @pack... gggj X L K m:;"' : miniGhost.x'mg_grid_init+0x4ebb - MG_UTILS F-705
g 1 - miniGhost.x!mini_ghost+0x167 - DRIVER F:145
= [Vl #*% MCD... - \) :
: [pac... 27200% ~ =] miniGhost.x!main+0x128a - main.c:345
; b [w* MCD... libc.so.6![libc s0.6]+0x21b14 - [unknown source file]
S CPU Time
KT | ik CPU Time ~
— e
Grouping: Bandwidth Domain / Bandwidth Utilization Type / Memory Object / Allocation Stack - | «llQ | o ‘
) Memory Bound -
BandwIdtgn?:rr;%nbj/eac??dlxvl‘l’:)dcﬂa‘tgtrllhéé?kn e G ubi i L2 Hit Rate | L2 Hit Bound | L2 M::s Boun / idth Bound AU EILS
v DRAM, GB/sec 50.0% 81.2% 6.8% 56.7% 3,300,099,000
¥ High 38.5% (D 81.3% 8.6% 56.7% 3,195,095,850
» [Unknown] 180,005,400
» _mm_malloc (4 MB) . . 87,002,610
» _mm_malloc (4 M8) Use callstack to 1dent1fy the 87,002,610
» _mm_malloc (4 MB) ' 87,002,610
’:mm:ma"oc (4MB) Call locatlon Of mm mallOC 87,002,610
» _mm_malloc (4 MB) — — 84,002,520
» _mm_malloc (4 MB) 84,002,520
» _mm_malloc (4 MB) 81,002,430
» _mm_malloc (4 MB) 81,002,430
» _mm_malloc (4 MB) 78,002,340
» _mm_malloc (4 MB) 75,002,250
» _mm_malloc (4 MB) 75,002,250 =)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

|dentifying high bandwidth memory objects (3/3)

MG UTILS.F

END TIE
IF (NUM VARS >)

L GRID39 (INX+ 1, INY : T IERR)

TERR, ’ (NX+2) ¥ (NY+2) *(NZ+2))
(GRID39,

ALLOCATE (
MG ASSERT (
MG INIT GRID

INY+

TERR
High BW memory object
identified is work

IF (NUM X
NUM VARS)

r

END IF
BLrnocaTE (WORK(O :NX+ - T = IERR)
MG ASSERT (IERR, r (NXH2) % (NY+2) ¥ (N2+2))

RETURN

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Roofline Analysis Using
Intel® Advisor

Find Effective Optimization Strategies

Intel® Advisor: Cache-aware roofline analysis

Roofline Performance Insights INTEL ADVISOR

n nghllghtS poor perfOrming |OOpS Performance (GFLOPS) R[@ « + X © | [UseSingle-Threaded Roofs ©
= Shows performance “headroom”™ *"
for each loop
— Which can be improved 11 82 f‘:@ '_f.i-—---l:__.-_-___S_C?JQFAE‘E‘_P_e_a_k_‘Lﬁ@@?:?j{???g@égg.?»_(jid,;é'_'—'

=1

Vector FMA Peak (single-threadéd): 42 j@,@FtOﬁg
Q)P Vector Add P%?K Qﬁ\r@fe'-tf'lreg_dsd)'?? 89 GFLOPS

Py qlet- O .-
— Which are worth improving et L
b nq‘?:“l‘—@g?;l o 4

= Shows likely causes of bottlenecks ;. s
- SuggeStS neXt Optimization Steps 054 ArithmeticIntensiW(F?;'éZID/Byle)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Find Effective Optimization Strategies

Intel® Advisor: Cache-aware roofline analysis

Roofs Show Platform Limits GFLOPs/S
= Memory, cache & compute limits
Dots Are Loops

= Bigger, red dots take more time so
optimization has a bigger impact

= Dots farther from a roof have more

CPU Cap: Vector Add

OCPU Cap: Scalar Add

. ° @ °
room for improvement % .)
Higher Dot = Higher GFLOPs/sec e e S oA
= Optimization moves dots up Which loops should we optimize?
= Algorithmic changes move dots » Aand G are the best candidates

= B has room to improve, but will have less impact
= E, C, D, and H are poor candidates

Roofline tutorial video

horizontally

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved. ‘ |ntel . 19

*Other names and brands may be claimed as the property of others.

Create Faster HPC, Cloud, and Al Software

What’s New in Intel® Parallel Studio XE 2018 Beta

Get More Performance from New Hardware

» Use fast AVX-512 instructions on Intel® Xeon® and Xeon Phi™ processors

= Accelerate MPI applications with Intel® Omni-Path Architecture support

Discover Untapped Performance Faster

* Intel® Advisor — Use Roofline analysis to find high impact, but under optimized loops

= Application Snapshot — Get quick answers: Does my hybrid code need optimization?

* Intel® VTune™ Amplifier — Profile private clouds with Docker* containers, Java* daemons

Boost Machine Learning Application Performance

* Intel® Data Analytics Acceleration Library — Speed machine learning with new optimized algorithms

» Intel® Distribution for Python* - Accelerate Python code using fast NumPy/SciPy and scikit-learn packages
Latest Standards and IDEs

= C++2017 draft parallelizes and vectorizes C++ easily using Parallel STL*

= Full Fortran* 2008, Fortran 2015 draft
= OpenMP* 5.0 draft, Microsoft Visual Studio* 2017

And much more*...
Register for Beta at: http://intel.ly/intel-parallel-studio-xe-2018-beta

Optimization Notice

Copyright © 2017, Intel Corporation. Al rights reserved. * See Release Notes for the full list with further updates and new features.

*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when

combined with other products.

Copyright © 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

(l N te,l ®experience

what's inside”

